Fuzzy-Rough set Approach to Attribute Reduction
نویسندگان
چکیده
Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.
منابع مشابه
Decision Table Reduction in KDD: Fuzzy Rough Based Approach
Decision table reduction in KDD refers to the problem of selecting those input feature values that are most predictive of a given outcome by reducing a decision table like database from both vertical and horizontal directions. Fuzzy rough sets has been proven to be a useful tool of attribute reduction (i.e. reduce decision table from vertical direction). However, relatively less researches on d...
متن کاملFuzzy-rough attribute reduction with application to web categorization
Due to the explosive growth of electronically stored information, automatic methods must be developed to aid users in maintaining and using this abundance of information e+ectively. In particular, the sheer volume of redundancy present must be dealt with, leaving only the information-rich data to be processed. This paper presents a novel approach, based on an integrated use of fuzzy and rough s...
متن کاملLower Approximation Reduction in Ordered Information System with Fuzzy Decision
Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an applicatio...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملRule Extraction Based on Rough Fuzzy Sets in Fuzzy Information Systems
Rough fuzzy sets are an effective mathematical analysis tool to deal with vagueness and uncertainty in the area of machine learning and decision analysis. Fuzzy information systems and fuzzy objective information systems exit in many applications and knowledge reduction in them can’t be implemented by reduction methods in Pawlak information systems. Therefore, this paper provides a model for ru...
متن کامل